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As 1s known, the convective motion of a fluld heated at the bottom 1s the
result of an equilibrium breakdown caused by the temperature gradilent reach-
ing @ definite critical value. The equilibrium stabllity was most thorough-
ly investigated in relation to a horizontal layer of fluid (the Rayleigh
problem, see review in [1]). Ostroumov [2 and 3] had investigated the con-
ditions of convectlon generation in a vertical clrcular cylinder. Later
investigations .dealt with cylinders of other cross sectlons {4 to 7] and
cavities of different forms [8 to 10]. These investigations related to
single vertical cylinders and cavities enclosed by heat conducting solids,
or with specified boundary conditions.

Of great interest 1is the problem of convective instablility of a fluid
contained in a system of cavitles subject to thermal interactlon via a heat
conducting solid, and in particular, in a system of vertical channels. Such
problems have, apparently, not been analyzed so far. Thils paper glves an
exact solution of the equllibrium stablility problem for the case of two
parallel vertical flat channels, separated by a solid mass. An approximate
solution is also presented for the problem of two vertical cylindrical chan-
nels of circular cross section in a solid. The critical Rayleigh number,
which determines the limit of insfability, is derived in terms of thermal
conductivity of the fluid and solid, and of the distance between the two
channels.

1. Flat channels, Two vertical parallel flat fluid layers (each layer
1s 2h thilck, the dlistance between thelir centers is 2d, and the z-axls polnts
vertically upwards) are provided in a homogeneous heat
conducting solid (Fig.l). Under equilibrium conditions
the fluid is motionless and the temperature gradient
1s constant and vertical

dT,
o4 (1.1)

We shall conslder two-dimensional perturbations of
equilibrium of the form
ve=v,=0, v,=v(), T=T(x), Vp=0 (1.2)

Here v, T and p are respectively the perturbations

V():O,

of velocity, temperature and pressure. The dependence
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of normal perturbations on time 1s subject to the exp(— ot) law, where o
is a real decrement (for heating from below) [11]. At the limit of stability
6 =0, 1l.e. neutral perturbations are stationary. We write the equatlons
of neutral perturbations in a dimensionless form (with primes denoting dif-
ferentiation with respect to x )
4
w4+ RT =0, T"+v=0, Tu"=0 (R:g—B\%?—) (1.3)

Here v , T are respectively the dimensionless perturbatlons of veloclty
and temperature of the fluid, 7, is the solid mass temperature perturbation,
R 1s the Raylelgh number, ¢ the acceleration of gravity, and g, v, x are
respectively the coefficients of the fluid thermal expanslon, kinematic vis-
cosity, and thermal diffusivity. 'As units of length. velocity and tempera-
ture we select h, x/h and 4k

At the liquid — solid interfaces the velocity must become zero, and the
continuity conditions of temperature and heat flow must be fulfilled. Inas-
much as the conductivity equation in the solid is expressed by IT,"= O , the
temperature in it must be linearlly dependent on the coordinate.

The postulation of boundedness of temperature perturbation 7, with x- t«
leads to the conclusion that the temperature in the outer regions of the
solid 1s constant, and that there 1s no horizontal flow-of heat in these
regions. On the other hand, a horlzontal heat flow may exlist in the layer
between the two channels resulting in a thermal interaction between these.
Thus, boundary conditions of Equations (1.3) are

v=0, T=1Tpn A'=Ty for T=1n (14)
Z):O, T,:O for T == 22
d—h d+h
(=55 m=t ")

Here A = n/u,, and x and x, are the thermal conductlivitles of the
1iquid and solid respectively, x;, and x, are the 1lnner and outer boundaries
of the right-hand (plus sign) and on the left-hand (minus sign) side channels.
Further to this, the condition of closed flow stream must be fulfilled in the

case of free convection -in a two-channel system
Xy X3

5 v_da:—|—5v+dx= (1.5)
X2 Xy
where v, and v_ are the velocities in the right- and left-hand side chan-
nels respectively. It 1s assumed that the two channels are interconnected
at some distance at the top and bottom, and that the fluid can pass from one
channel to the other, so that the rate of flow across the section of one
channel may be different from zero.

Problem (1.3) to (1.5) has even and odd solutions with respect to x

We shall first consider the odd typs solutions. In this case the temper-
ature 1n the layer of solid between the channels is Z,= cx . For the
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determination of velocity in the fluid it will be convenient to eliminate 7

from Eguations (1.3) AV 4+ Ry =0 (1.6)
The general solution of Equation (1.6) has the form
v=Asinrz + Bcosrz - Csinh rz -+ Deosh rz (1.7
i
where 7 = R* | The temperature in the fluid is then
T=r2{Asinrz+ Bcosrz — Cainh 7z — Deosh 1) (1.8}

Boundary conditions (1.4) lead to a system of homogeneous equations for
the determination of constants 4, B, ¢, 2 and ¢ (condition of closed
flow (1.5) is automatleally fulfilled in the case of an odd solution). The
conditlon of this system solvability yields an expresslon from which the
critical value of the Rayleigh number is determined

tan 2r —+tagh2r
r{sec2rsech 2r — 1) Ay (1.9)

Having determined the constants of integration, we find the velocity and
temperature distribution

0 = +[ COS I (Ty — ) —coshT (Ty —x)  sinr(xp — ) fsinhr (w3 — z)
- €08 r (z — Zy) —coshr (z3 — 1) sin r {z: — xy) ~Fsinhr {z2 — 3;) ‘1
_ oy A [ cosr(xz— z) focomtr (z; —x) $in r (2 — =) —sinh? (X2 — 2)
T=+ re [cos r(zz — 7)) —coshr (x3 — ;) SINT (T; — %) 4-sinkr (T3 — %7) —\ (1.10)
T 2A (1 — cos 2reosh2r)
™ 7 r (cos 2r —cosh 2r) (8in 2r - sinh2r)

x

The plus and minus signs refer to the left- and right-hand side channels
respectively. The solution (1.10) amplitude remains arbitrary in view of
the problem homogenelity.

In the case of an even solution the temperature of the intermediate solid
layer 1s constant, I,= const . Constants of integration are derived from
the boundary conditions (1.4) and the condition of closed flow {1.5). 1In
view of the velocity being even {(v,= v_)} , the latter must be fulfilled
separately in each of the channels. The fluid velocity and temperature are
defined by Formulas (1.10) with a plus sign for each of the two channels,
but with different values of the critical number 7 which in thls case is
determined by the characteristie relationshilp

wnt 5 —unb? r = 0 (1.11)
The temperature in the intermediate solid layer is

2 (8in 2rcosh2r -+ cOS 2rsinh2r) (1 12)
r? (c0S 2r —cosk 2r) (sin 2r -sinh2r) ’

Tm:

Thus, Equations {1.9) and {1.11) determine the spectrum of critical Ray-
leigh numbers with respect to x for the even and odd type of flow. It will
be seen from (1.9) that the critical numbers 7 which correspond to odd
levels depend on one parameter ix, which defines the thermal relationship
of the two channels. For example, large values of thls parameter correspond
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of the two channels. For example, large values of this parameter correspond
to a weak interaction between channels (great thickness of the intermediate
layer, or its low thermal conductivity).

It will be seen from (1.11) that in the case of an even solution, the
critical numbers do not depend on the intermedlate layer parameters. This
is due to the temperature there being, in this case, constant and to the
absence of any horizontal heat flow, i.e. there ig no thermal interaction
between the channels. In each of the channels an “autonomous” circulation
is originated with a zero flow rate acrcss its section. Critical values of
the Rayleigh number 7 coincide, gquite naturally, with values which define
the equilibrium stability 1imit in a single flat channel 16]., Under these
conditions the even and odd kinds of motion with respect to the middle of
the channel correspond to the two groups of solutions of Equation {1.1i1)

tan7 == -+tanhr

The odd {*,, r3,...) and even (r,, ry,...) lower levels of the spectrum
of critical numbers 7 are shown on Fig.2 as functions of ix;. It will be
seen from this graph that for \ix,~= the "odd" critical values of the Ray-
leigh number decrease {decreasing stability). Of the greatest interest is
the lower level of 7, whlch actually determines the convectlon threshold.
With Ax,~ =~ , i.e. with the weakening of channel interaction, the lowest
critical number r, tends to zero, and the equilibrium becomes absolutely
unstable. We note that with the weakening of
interaction (ix,-«) the odd type motions become
practically "autonomous”, and that consequently
the even and odd levels corresponding to motions
with an equal number of nodes frz and r;, , Iy
and rg, etc.) are drawn together.

At the 1imit of decreasing distance between
the two channels (Ax, ~O) the critical numbers
are those of a single channel and correspond

N ~ to motions with the velocity node at the chan-
nel center.

We may note in conclusion that the solutions
derived in this Section are exact stationary
solutions of the nonlinear convectlon equations.

2. COylindrical channels, We shall consider
1 now two vertical circular cylindrical channels
of the same radius p spaced at a distance
Az 2d between their axes, and surrounded by a

heat conducting solid mass. We consider equi-
Pig. 2 1ibrium perturbations defined by

ve=v,=0, wv,=v(zy, T=T(zy, Vp=0 (21)
and instead of (1.3) obtain Equations

.

oo™

2 2 4
Av+ RT =0,AT +v=0,ATn =0 (A=t 1s. r=82%) 2.9)
All parameters of Equations (2.2) are dimensionless, with the cylinder
radius p as unit. The position of axes
in the horizontal plane 1is shown on Fig.3.

a"lagL y a=laal

We introduce bipolar coordinates (a,8)
defined by relations
a sichX asinﬂ

T = —————n st o
coshq - cos 3 * cosh ot 4~ £0S 3

(2.3)
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(20 1s the distance between poles). At the fluid — solid interface the
usual conditlons for veloclty and temperature must be fulfilled

oT  ar,,
UCO, T:Tm, }\'52:71— for a:iiaol (2.4)

(the plus and minus signs correspond to the right- and left-hand side chan-
nels).

We shall 1imit ourselves to finding an approximate solution which would
determine the emergence of convection (the lower odd level). With this in
view we approximate the veloclty by a polynomial which satisfies boundary

condition v* = v, 1 — (z — d)? — 3] (2.5

Here v, denotes an arbitrary (because of the problem homogeneity) ampli-
tude of motion, with different signs for the right- and left-hand side chan-
nels.

The temperature 7, in a solid mass 1is a harmonic function odd with respect
to x (i.e. also with respect to ¢ ) which vanishes at infinity (for aq-0)
and 1s periodic with respect to g

T, = cya + ¢;simh @ cOS P + ¢, stnn2a cos 28 + . . . (2.6)
The fluld temperature 1s alsc approximated by a polynomial of the form
T*=A +B(x—d)+C(z—d?+ Cy? 2.7

The constants of thls expression of T will be determined from boundary
conditions and the requirement that T* (in accordance with Galerkin's method)
must approximately satisfy the termal conductivity equation

S(AT* 14 p*)T*dS =0 2.8)

(integration is. carried out over the channel cross sections). Expanding T*

into a Fourlier series with respect to g , and
A=0 1imiting this expansion, as well as that of (2.6)
to the first two harmonics, we obtain from the

30 temperature boundarf conditions and the integral

R
\\\\;
B condition (2.8) five relationships
\._QL__
AN 1 A=—(+)C B=(2h—fesC
e
\ D co = — 2MC
10T ~d 2+ 3f
N T a=2(—Be) € C=—nga gy
4 2
A et - a 70 which determine the five constants A{ Bs Cs Co
Fig. 4 and o, We find, as a result
e %
# @0 ) = 2 (o0 + oo e 2-9)

In this manner we have derived approximate expressions of temperatures
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7% and T¥ , corresponding to the velocity approximation (2.5).

Substituting intc the first of Equations (2.2) the approximations of v*
and T% multiplying it by ©v¥, and integrating over the cross sections of
channels, we derive the condition of solvability of system (2.2)," from which

the Raylelgh number critical value can be determined
R = _‘)An*y*(w/ \ T*p* dS (2.10)

After computation, we find
R— 144 (1 4- 2f)
(2 + 3f)?
where J 1s a known function of A and g (see (2.9)). Formula (2.11)
makes 1t possible to express the critical Rayleigh number % as a function
of the ratlo the fluld and solid mass thermal conductivities A = x/k, and
of the distance bf the channel axes (in units of their radius) 2d = 2cosh qo «

(2.11)

Fig.4 shows curves depicting the dependence of R on the dimensilonless
distance- d for several values of A . It will be seen that the most stable
equilibrium obtains for A = 0 {(infinite thermal conductivity of the solid).
In this case the critical Rayleigh number is at its maximum and independent
of the distance between channels. With increasing d and A (i.e. with a
weakening thermal interaction between channels)} the critical number decreases.

Reverting to Formula (2.11), we note that the critical Rayleigh number
with the approximation consldered here, 1s, as a matter of fact, determined
by one parameter, namely J . This parameter can be given a physical mean=-
ing by relating it to the effective value of the dimensionless Biot number

b which we shall define by the heat flow and temperature averaged over the

e SE
channel boundary b —<(g_f>%> // (T )ad (2.12)

The sign <) denotes here the averaging over the boundary. Substituting
T* we obtain b = aﬂf . Thus parameter J decreases with the increase of
heat transfer between fluld and solid, 1l.e. with the increase of interaction
between channels. This value 1s the analog of the interaction parameter ix,
in the case of flat channels (see Section 1). For large distances (d> 1,
a0 > 1)

f= 2May = 2\ 1n 2d (2.13)
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